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The Tower of Hanoi Puzzles

The original Tower of
Edouard Lucas Hanoi puzzle
1842-1891 1883



The Tower of Hanoi Puzzles

- n discs arranged on 3 + m vertical pegs, with n,m € Z=°.

- Each disc Is a different size.

- Regular state: If multiple discs are on the same peg, they
are arranged in decreasing size from bottom to top.

- Perfect state: A regular state in which all discs are on the
same peg.
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The Tower of Hanoi Puzzles

- Object: To move from one perfect state to another by
moving one disc at a time from the topmost position on
one peg to the topmost position on another peg.

- Divine rule: No larger disc may be placed on top of any
smaller disc.
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L
Hanoi Graphs

- The Hanoi graph H;}, corresponds to the Tower of Hanoi
puzzle with 3 + m pegs and n discs.

- Label the pegs 0,1, ..., 2 + m and let x; be the position of
the disc with radius i, foreach i = 1,2, ..., n.

- Then each regular state in the puzzle is represented by
vertex in the graph, labeled with an n-tuple (xq, x5, ..., x5,),
where each x; € {0,1, ...,2 + m}.

- The edges of H}, are all the possible legal moves of the
discs. Two vertices are adjacent if and only if their
corresponding states can be achieved from one another
through a legal move of exactly one disc.



Example: H>,

‘ i | | \ (1,1,1,1,1)
L

0 1 2 3 2 +m

‘ i | | \ (0,1,1,1,1)
oo

0 1 2 3 24+ m

‘ | | | | (0,2 +1m,1,1,1)
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0 1 2 3 24+ m

In the graph H,>,,
(1,1,1,1,1)~(0,1,1,1,1) and (0,1,1,1,1)~(0,2 + m, 1,1,1),
but (1,1,1,1,1) +~ (0,2 + m,1,1,1).



L
Hanoi Graphs

Definition
Letn,m € Z,withn > 0and m > 0.
The Hanoi graph H}}, is the graph with vertex set V(H;},)
given by
VH}) = {(x1, %5, e, )]0 < x; <2 +m,x; € Z}

and where (xq, x5, ..., Xy )~(yV1, V>, ..., V) if and only if there
exists i € {1,2, ..., n} such that

L X F Y,

i xj=yjforalli+#j,and

i {x,yi 0 {xg, ., x4} = 0.



Example: H;
e
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Example: H{ & H?
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Hamiltonian Graphs

Definition
A graph G is called hamiltonian if it contains a cycle that is
a spanning subgraph of G.
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Example: H?

111 211 201 001 002 102 122 222



Hamiltonicity of H,

Lemma 1

Let sq, s, S3, and s, be perfect states in H}},withs; # s,
and s; # s,.

Then there exists an automorphism f € Aut(H;},) such that
f(s1) = sz and f(sz) = s4.



Hamiltonicity of H,

Theorem 1
Every Hanoi graph is hamiltonian.

Proof: Fix any m € Z=°.
The proof consists of two parts.

- Part I: We will show by induction on n that there exists a
hamiltonian path in H}} beginning and ending with vertices
that correspond to distinct perfect states.

- Part Il: We will use the result of Part | to construct a
hamiltonian cycle in H1.



Theorem 1, Part |

Base Case:
Letn = 1.

The Hanoi graph H}, is isomorphic to the complete graph
on 3 4+ m vertices, which is hamiltonian, and so contains a
hamiltonian path.

Example: H;




Theorem 1, Part |

Induction Hypothesis:
Fix any n = 1 and suppose H,, has a hamiltonian path
beginning and ending with vertices that correspond to
distinct perfect states.

H**1 corresponds to the puzzle obtained by adding a disc
with radius n + 1 to the Tower of Hanoi puzzle that
correspond to H;;.
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heorem 1, Part |

Without loss of generality, suppose all discs begin on peg 0.

Al | | ]

0 1 2 3 24+m

By the induction hypothesis, there is a hamiltonian path
between distinct perfect states in Hj;,.

By Lemma 1, perfect states are isomorphic, so there is a
hamiltonian path between any two distinct perfect states.

We can move disc n + 1 stepwise through every peg from O
to 2 + m in the following way.



Theorem 1, Part |

Before each step moving disc n + 1, we perform a
hamiltonian path transferring the n-tower of discs to a peg
allowing disc n + 1 to move.
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oo
0 1 2 3 24+ m

In general, before moving disc n + 1 from peg i to peg
i + 1, we first move the n-tower to peg i + 2(mod 3 + m).




heorem 1, Part |

After the last move of disc A

n + 1 to peg 2 + m, the n- o 1z 3 e
tower can be transferred to ‘
peg 2 + m as well, again Er— ” T

through a hamiltonian path I
in H},. vee el

0 1 2 3 24+ m
During this process, every : :
possible state of all n + 1 A
discs is achieved exactly
once, completing a
hamiltonian path in H'1.

0 1 2 3 24+ m



heorem 1, Part

We now construct a hamiltonian cycle in H2+1,

Without loss of generality, let the initial vertex in the cycle
be (1,1,...,1,0) € V(HE).

LAl |l

24+m

By Part I, we can transfer the n-tower of smaller discs from
peg 1 to peg 2 through a hamiltonian path, followed by
moving disc n + 1 to peg 1.

In this step, we've gone through every vertex with a 0 in the
last entry, ending on vertex (2,2, ...,2,1).

MOOOJ
0 1 2 3 24+m
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Theorem 1, Part

Continuing in this way, we

transfer the n-tower through

a hamiltonian path from peg ‘ ‘ ‘ ‘ _|
i +1topeqgi+ 2 for each

i €{0,1,...,2 + mj}, following

each by a single move of ‘ ‘ ‘ ‘ _|
disc n + 1 from peg i to peg

i + 1, where each step is

modulo 3 + m. ‘ \ ‘ |_ |
In each step, we go through .

0 1

every vertex with an i in the
last entry.



heorem 1, Part

The process terminates
when we transfer the n- ‘ ‘ ‘ ‘ _l

tower back to peg 1, 0 : 2 s T,
followed by moving disc

n + 1 to peg O. ‘ ‘ ‘ ‘ J
We have completed a path . 1 ’ ’ e

in H2*1 that goes through ' :
every vertex exactly once ‘ \ ‘ |_ |
and ends on the initial renbiasvas

vertex. Thus H%*! contains
a hamiltonian cycle. =




Planar Graphs

Definition
A graph G is called planar if it can be drawn in the plane
without any crossings.

Example:
The complete graph The complete graph K-
K, is planar. IS not planar




B
Planarity of H}},

Theorem 2
The only planar Hanoi graphs are HY, Hi, and H?.

Proof:

- Part I: We will show that H{ and H# are planar by
constructing planar embeddings of each.

- Part Il: We will show by induction that H{ is planar for all

n € N.
- Part lll: We will show that H/}, is non-planar for all m > 2
andn > 1.

- Part IV: We will show that H{* is non-planar for all n > 3.



Theorem 2, Part |

H{ and H? are planar, as demonstrated by planar
embeddings.

2 3

Note that, since H? is 3-connected (there is no pair of
vertices whose deletion results in a disconnected graph),
this planar embedding of H? is essentially unique.



Theorem 2, Part |
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heorem 2, Part

We will show by induction on n that H} allows a planar
embedding, whose infinite face is the complement of an
equilateral triangle with side length 2™ — 1, and whose
corners are the perfect states.

Base Case: Letn = 1.

The graph Hj corresponds to the Tower of Hanoi puzzle
with 1 disc on 3 pegs. The disc can move freely between
the pegs, so H} is isomorphic to the complete graph K.

Thus Hj is planar and it can be drawn as an 0

equilateral triangle with side length 1 = 21 — 1. /\

1 2




Theorem 2, Part

Induction Hypothesis:

Fix any k € N and suppose H¥ can be drawn without
crossings such that its infinite face is the complement of an
equilateral triangle with side length 2% — 1 and the corners
are the perfect states.

Label the perfect states of H¥ by ([0]), ([1]), and
(12]), where (]i]) is the k-tuple consisting of all i’s.
([0])

length 2 — 1
N

(1]) (12)



heorem 2, Part

We construct HE*? in the following way.

- Take 3 copies of H¥, one for each possible position of disc
k+1 (peg0, 1, or 2).

- Relabel their vertices with (k + 1)-tuples ending in O, 1,
and 2, respectively.

- Add 3 edges to form the adjacencies (|0], 1)~([0], 2),
(11],0)~([1], 2), and ([2],0)~([2], 1).

- Since each of the 3 copies of HY is an equilateral triangle,
through flips we can arrange them so that each of the

three edges added are the middle edges of a new
equilateral triangle with side length

2(2F —1) + 1 =2k1 -1



Theorem 2, Part I

({0],0) ({0],0)

(o) (11,0 (12,0 (12],0) ([1,0)
s ([1],2)
length 2% — 1 ({0}, 1) ([0],2) 1]
N
(1) (2h ([1],1) (12,1) ([1],2) (12],2) (1], 1) O (0.2 (.2

k k+1
H} _ H!



heorem 2, Part

We certainly have the adjacencies ([0],1)~(]|0], 2),
([1],0)~([1],2), and ([2],0)~([2],1) in HX¥*™!, since if the k-
tower of smaller discs are all on one peg, thendisc k + 1 is
free to move between the other two pegs.

To verify that exactly 3 edges are added to the 3 copies of
HY to form HY*1, we can use the edge count formula for H,

Eal = ST (5 4y — (14 m)]

to show that
|EETY| = 3|EE| + 3.

Thus H{ is planar for all n € N.



Theorem 2, Part
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heorem 2, Part Il

The Hanoi graph Hi is isomorphic to the complete graph
K-, which is nonplanar.

i N

0 1 2 3 4 4 3

Forany m = 2 and n > 1, the Tower of Hanoi puzzle has at
least 5 pegs.

In any regular state, the smallest disc can move freely
between any set of 5 pegs, so K: Is a subgraph of the
corresponding Hanoi graph.

Thus H} is non-planar forallm > 2 and n > 1.
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Theorem 2, Part Il




Theorem 2, Part IV

Lemma 2

Fixany m,n € N,any k € N such that k < n.
Fixanyl €{0,1,..,2 + m}.

Let S = {(x1, X2, oo, X)X g1 = Xpyo = - = x5 = 1}
Then the subgraph of H? induced by S is isomorphic to HE .
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Theorem 2, Part IV

By Lemma 2, H; is a subgraph of HI* for all n > 3.
So we need only show that H} is non-planar.

Kuratowski’s Theorem:

If a graph G contains a subgraph that is a K5 or K3 3
subdivision, then G Is non-planar.

We can construct H; by taking 4 copies of H?, one for each
position of the largest disc, and adding 24 edges
corresponding to legal moves of the largest disc.



heorem 2, Part [V
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Theorem 2, Part IV
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Theorem 2, Part IV

K- subdivision subgraph of H;:

310

201

Thus H{* is non-planar foralln > 3. =
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Theorem 2, Part IV




Conclusion

Planarity:
The only planar Hanoi graphs are HY, Hi, and H?.

Hamiltonicity:
Every Hanoi graph H;}, is hamiltonian.



Some Open Problems

- The Frame-Stewart Conjecture for more than 4 pegs.

- The genera and crossing numbers for non-planar Hanoi
graphs.

- A formula for the average distance in H};, form > 1.
- The diameter of H}}, for m > 1.
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