ON THE PLANARITY AND HAMILTONICITY OF HANOI GRAPHS

Katherine Rock Advisor: Dr. John Caughman

Fariborz Maseeh Department of Mathematics and Statistics Portland State University

MTH 501 Presentation June 2, 2016

The Tower of Hanoi Puzzles

Édouard Lucas 1842-1891 The original Tower of Hanoi puzzle 1883

The Tower of Hanoi Puzzles

- *n* discs arranged on 3 + m vertical pegs, with $n, m \in \mathbb{Z}^{\geq 0}$.
- Each disc is a different size.
- *Regular state:* If multiple discs are on the same peg, they are arranged in decreasing size from bottom to top.
- Perfect state: A regular state in which all discs are on the same peg.

The Tower of Hanoi Puzzles

- Object: To move from one perfect state to another by moving one disc at a time from the topmost position on one peg to the topmost position on another peg.
- Divine rule: No larger disc may be placed on top of any smaller disc.

Hanoi Graphs

- The Hanoi graph H_m^n corresponds to the Tower of Hanoi puzzle with 3 + m pegs and n discs.
- Label the pegs 0,1, ..., 2 + m and let x_i be the position of the disc with radius *i*, for each i = 1, 2, ..., n.
- Then each regular state in the puzzle is represented by vertex in the graph, labeled with an *n*-tuple $(x_1, x_2, ..., x_n)$, where each $x_i \in \{0, 1, ..., 2 + m\}$.
- The edges of Hⁿ_m are all the possible legal moves of the discs. Two vertices are adjacent if and only if their corresponding states can be achieved from one another through a legal move of exactly one disc.

In the graph H_m^5 , (1,1,1,1,1)~(0,1,1,1,1) and (0,1,1,1,1)~(0,2 + m, 1,1,1), but (1,1,1,1,1) \nsim (0,2 + m, 1,1,1).

Hanoi Graphs

Definition

Let $n, m \in \mathbb{Z}$, with n > 0 and $m \ge 0$.

The Hanoi graph H_m^n is the graph with vertex set $V(H_m^n)$ given by

$$V(H_m^n) = \{(x_1, x_2, \dots, x_n) | 0 \le x_i \le 2 + m, x_i \in \mathbb{Z}\}$$

and where $(x_1, x_2, ..., x_n) \sim (y_1, y_2, ..., y_n)$ if and only if there exists $i \in \{1, 2, ..., n\}$ such that

i.
$$x_i \neq y_i$$
,
ii. $x_j = y_j$ for all $i \neq j$, and
iii. $\{x_i, y_i\} \cap \{x_1, \dots, x_{i-1}\} = \emptyset$

Outline

- Introduction (done)
- Hamiltonian graphs
- Hamiltonicity of H_m^n
- Planar graphs
- Planarity of Hanoi graphs

Hamiltonian Graphs

Definition

A graph *G* is called hamiltonian if it contains a cycle that is a spanning subgraph of *G*.

Hamiltonicity of H_m^n

Lemma 1

Let s_1 , s_2 , s_3 , and s_4 be perfect states in H_m^n , with $s_1 \neq s_2$ and $s_3 \neq s_4$.

Then there exists an automorphism $f \in Aut(H_m^n)$ such that $f(s_1) = s_3$ and $f(s_2) = s_4$.

Hamiltonicity of H_m^n

Theorem 1

Every Hanoi graph is hamiltonian.

Proof: Fix any $m \in \mathbb{Z}^{\geq 0}$.

The proof consists of two parts.

- Part I: We will show by induction on n that there exists a hamiltonian path in Hⁿ_m beginning and ending with vertices that correspond to distinct perfect states.
- Part II: We will use the result of Part I to construct a hamiltonian cycle in H_m^{n+1} .

Base Case:

Let n = 1.

The Hanoi graph H_m^1 is isomorphic to the complete graph on 3 + m vertices, which is hamiltonian, and so contains a hamiltonian path.

Induction Hypothesis:

Fix any $n \ge 1$ and suppose H_m^n has a hamiltonian path beginning and ending with vertices that correspond to distinct perfect states.

 H_m^{n+1} corresponds to the puzzle obtained by adding a disc with radius n + 1 to the Tower of Hanoi puzzle that correspond to H_m^n .

Without loss of generality, suppose all discs begin on peg 0.

By the induction hypothesis, there is a hamiltonian path between distinct perfect states in H_m^n .

By Lemma 1, perfect states are isomorphic, so there is a hamiltonian path between any two distinct perfect states.

We can move disc n + 1 stepwise through every peg from 0 to 2 + m in the following way.

Before each step moving disc n + 1, we perform a hamiltonian path transferring the *n*-tower of discs to a peg allowing disc n + 1 to move.

In general, before moving disc n + 1 from peg *i* to peg i + 1, we first move the *n*-tower to peg $i + 2 \pmod{3 + m}$.

After the last move of disc n + 1 to peg 2 + m, the *n*-tower can be transferred to peg 2 + m as well, again through a hamiltonian path in H_m^n .

During this process, every possible state of all n + 1discs is achieved exactly once, completing a hamiltonian path in H_m^{n+1} .

We now construct a hamiltonian cycle in H_m^{n+1} .

Without loss of generality, let the initial vertex in the cycle be $(1,1, ..., 1,0) \in V(H_m^{n+1})$.

By Part I, we can transfer the *n*-tower of smaller discs from peg 1 to peg 2 through a hamiltonian path, followed by moving disc n + 1 to peg 1.

In this step, we've gone through every vertex with a 0 in the last entry, ending on vertex (2, 2, ..., 2, 1).

Continuing in this way, we transfer the *n*-tower through a hamiltonian path from peg i + 1 to peg i + 2 for each $i \in \{0,1, \dots, 2 + m\}$, following each by a single move of disc n + 1 from peg *i* to peg i + 1, where each step is modulo 3 + m.

In each step, we go through every vertex with an i in the last entry.

The process terminates when we transfer the ntower back to peg 1, followed by moving disc n + 1 to peg 0.

We have completed a path in H_m^{n+1} that goes through every vertex exactly once and ends on the initial vertex. Thus H_m^{n+1} contains a hamiltonian cycle.

Planar Graphs

Definition

A graph *G* is called planar if it can be drawn in the plane without any crossings.

Example:

The complete graph K_4 is planar.

The complete graph K_5 is not planar

Planarity of H_m^n

Theorem 2

The only planar Hanoi graphs are H_0^n , H_1^1 , and H_1^2 .

Proof:

- Part I: We will show that H_1^1 and H_1^2 are planar by constructing planar embeddings of each.
- Part II: We will show by induction that H_0^n is planar for all $n \in \mathbb{N}$.
- Part III: We will show that H_m^n is non-planar for all $m \ge 2$ and $n \ge 1$.
- Part IV: We will show that H_1^n is non-planar for all $n \ge 3$.

 H_1^1 and H_1^2 are planar, as demonstrated by planar embeddings.

Note that, since H_1^2 is 3-connected (there is no pair of vertices whose deletion results in a disconnected graph), this planar embedding of H_1^2 is essentially unique.

<i>m</i> , <i>n</i>	1	2	3	4	5	
0						
1	Y	Y				
2						
3						
4						
5						
:						

We will show by induction on *n* that H_0^n allows a planar embedding, whose infinite face is the complement of an equilateral triangle with side length $2^n - 1$, and whose corners are the perfect states.

Base Case: Let n = 1.

The graph H_0^1 corresponds to the Tower of Hanoi puzzle with 1 disc on 3 pegs. The disc can move freely between the pegs, so H_0^1 is isomorphic to the complete graph K_3 . Thus H_0^1 is planar and it can be drawn as an equilateral triangle with side length $1 = 2^1 - 1$.

1

Induction Hypothesis:

Fix any $k \in \mathbb{N}$ and suppose H_0^k can be drawn without crossings such that its infinite face is the complement of an equilateral triangle with side length $2^k - 1$ and the corners are the perfect states.

Label the perfect states of H_0^k by ([0]), ([1]), and ([2]), where ([*i*]) is the *k*-tuple consisting of all *i*'s.

We construct H_0^{k+1} in the following way.

- Take 3 copies of H_0^k , one for each possible position of disc k + 1 (peg 0, 1, or 2).
- Relabel their vertices with (k + 1)-tuples ending in 0, 1, and 2, respectively.
- Add 3 edges to form the adjacencies ([0], 1)~([0], 2), ([1], 0)~([1], 2), and ([2], 0)~([2], 1).
- Since each of the 3 copies of H^k₀ is an equilateral triangle, through flips we can arrange them so that each of the three edges added are the middle edges of a new equilateral triangle with side length

$$2(2^k - 1) + 1 = 2^{k+1} - 1.$$

We certainly have the adjacencies $([0], 1) \sim ([0], 2)$, $([1], 0) \sim ([1], 2)$, and $([2], 0) \sim ([2], 1)$ in H_0^{k+1} , since if the *k*-tower of smaller discs are all on one peg, then disc k + 1 is free to move between the other two pegs.

To verify that exactly 3 edges are added to the 3 copies of H_0^k to form H_0^{k+1} , we can use the edge count formula for H_m^n $|E_m^n| = \frac{(3+m)(2+m)}{4}[(3+m)^n - (1+m)^n]$

to show that

$$\left|E_0^{k+1}\right| = 3\left|E_0^k\right| + 3.$$

Thus H_0^n is planar for all $n \in \mathbb{N}$.

<i>m</i> , <i>n</i>	1	2	3	4	5	
0	Y	Y	Y	Y	Y	
1	Y	Y				
2						
3						
4						
5						
:						

The Hanoi graph H_2^1 is isomorphic to the complete graph K_5 , which is nonplanar.

For any $m \ge 2$ and $n \ge 1$, the Tower of Hanoi puzzle has at least 5 pegs.

In any regular state, the smallest disc can move freely between any set of 5 pegs, so K_5 is a subgraph of the corresponding Hanoi graph.

Thus H_m^n is non-planar for all $m \ge 2$ and $n \ge 1$.

<i>m</i> , <i>n</i>	1	2	3	4	5	
0	Y	Y	Y	Y	Y	
1	Y	Y				
2	Ν	Ν	Ν	Ν	Ν	
3	Ν	Ν	Ν	Ν	Ν	
4	Ν	Ν	Ν	Ν	Ν	
5	Ν	Ν	Ν	Ν	Ν	
:	÷	:	:	:	:	•.

Lemma 2

Fix any $m, n \in \mathbb{N}$, any $k \in \mathbb{N}$ such that k < n. Fix any $l \in \{0, 1, ..., 2 + m\}$. Let $S = \{(x_1, x_2, ..., x_n) | x_{k+1} = x_{k+2} = \cdots = x_n = l\}$. Then the subgraph of H_m^n induced by *S* is isomorphic to H_m^k .

By Lemma 2, H_1^3 is a subgraph of H_1^n for all n > 3. So we need only show that H_1^3 is non-planar.

Kuratowski's Theorem:

If a graph *G* contains a subgraph that is a K_5 or $K_{3,3}$ subdivision, then *G* is non-planar.

We can construct H_1^3 by taking 4 copies of H_1^2 , one for each position of the largest disc, and adding 24 edges corresponding to legal moves of the largest disc.

 K_5 subdivision subgraph of H_1^3 :

Thus H_1^n is non-planar for all $n \ge 3$.

<i>m</i> , <i>n</i>	1	2	3	4	5	
0	Y	Y	Y	Y	Y	
1	Y	Y	Ν	Ν	Ν	
2	Ν	Ν	Ν	Ν	Ν	
3	Ν	Ν	Ν	Ν	Ν	
4	Ν	Ν	Ν	Ν	Ν	
5	Ν	Ν	Ν	Ν	Ν	
:	:	:		:	:	•.

Conclusion

Planarity:

The only planar Hanoi graphs are H_0^n , H_1^1 , and H_1^2 .

Hamiltonicity:

Every Hanoi graph H_m^n is hamiltonian.

Some Open Problems

- The Frame-Stewart Conjecture for more than 4 pegs.
- The genera and crossing numbers for non-planar Hanoi graphs.
- A formula for the average distance in H_m^n for $m \ge 1$.
- The diameter of H_m^n for $m \ge 1$.

References

T. Bousch, La quatrieme tour de Hanoi, *Bull. Belg. Math. Soc. Simon Steven*, 21 (2014): 895-912.

A. Hinz and D. Parisse, On the planarity of hanoi graphs, *Expositions Mathematicae*, 20 (2002): 263-268.

A. Hinz, S. Klavzar, U. Milutinovic, and C. Petr, *The Tower of Hanoi – Myths and Maths*, Springer Basel, 2013.

S. Klavzar, U. Milutinovic, and C. Petr, Combinatorics of topmost discs of multi-peg Tower of Hanoi problem, *ARS Combin.*, 59 (2001): 55-64.

J.S. Rohl and T.D. Gedeon, The Reve's Puzzle, *The Computer Journal*, 29 (1986): 187-188

Douglas B. West, *Introduction to Graph Theory*, Prentice Hall, Second Edition, 2001.