ON THE PLANARITY AND HAMILTONICITY OF HANOI GRAPHS

Katherine Rock
Advisor: Dr. John Caughman

Fariborz Maseeh Department of Mathematics and Statistics Portland State University

MTH 501 Presentation
June 2, 2016

The Tower of Hanoi Puzzles

Édouard Lucas 1842-1891

The original Tower of Hanoi puzzle

1883

The Tower of Hanoi Puzzles

- n discs arranged on $3+m$ vertical pegs, with $n, m \in \mathbb{Z}^{\geq 0}$.
- Each disc is a different size.
- Regular state: If multiple discs are on the same peg, they are arranged in decreasing size from bottom to top.
- Perfect state: A regular state in which all discs are on the same peg.

The Tower of Hanoi Puzzles

- Object: To move from one perfect state to another by moving one disc at a time from the topmost position on one peg to the topmost position on another peg.
- Divine rule: No larger disc may be placed on top of any smaller disc.

Hanoi Graphs

- The Hanoi graph H_{m}^{n} corresponds to the Tower of Hanoi puzzle with $3+m$ pegs and n discs.
- Label the pegs $0,1, \ldots, 2+m$ and let x_{i} be the position of the disc with radius i, for each $i=1,2, \ldots, n$.
- Then each regular state in the puzzle is represented by vertex in the graph, labeled with an n-tuple ($x_{1}, x_{2}, \ldots, x_{n}$), where each $x_{i} \in\{0,1, \ldots, 2+m\}$.
- The edges of H_{m}^{n} are all the possible legal moves of the discs. Two vertices are adjacent if and only if their corresponding states can be achieved from one another through a legal move of exactly one disc.

Example: H_{m}^{5}

In the graph H_{m}^{5},
$(1,1,1,1,1) \sim(0,1,1,1,1)$ and $(0,1,1,1,1) \sim(0,2+m, 1,1,1)$, but $(1,1,1,1,1) \times(0,2+m, 1,1,1)$.

Hanoi Graphs

Definition

Let $n, m \in \mathbb{Z}$, with $n>0$ and $m \geq 0$.
The Hanoi graph H_{m}^{n} is the graph with vertex set $V\left(H_{m}^{n}\right)$ given by

$$
V\left(H_{m}^{n}\right)=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \mid 0 \leq x_{i} \leq 2+m, x_{i} \in \mathbb{Z}\right\}
$$

and where $\left(x_{1}, x_{2}, \ldots, x_{n}\right) \sim\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ if and only if there exists $i \in\{1,2, \ldots, n\}$ such that
i. $x_{i} \neq y_{i}$,
ii. $\quad x_{j}=y_{j}$ for all $i \neq j$, and
iii. $\left\{x_{i}, y_{i}\right\} \cap\left\{x_{1}, \ldots, x_{i-1}\right\}=\varnothing$.

Example: H_{0}^{3}

Example: $H_{1}^{1} \& H_{1}^{2}$

Outline

- Introduction (done)
- Hamiltonian graphs
- Hamiltonicity of H_{m}^{n}
- Planar graphs
- Planarity of Hanoi graphs

Hamiltonian Graphs

Definition

A graph G is called hamiltonian if it contains a cycle that is a spanning subgraph of G.

Example: H_{0}^{3}

Hamiltonicity of H_{m}^{n}

Lemma 1

Let s_{1}, s_{2}, s_{3}, and s_{4} be perfect states in H_{m}^{n}, with $s_{1} \neq s_{2}$ and $s_{3} \neq s_{4}$.
Then there exists an automorphism $f \in \operatorname{Aut}\left(H_{m}^{n}\right)$ such that $f\left(s_{1}\right)=s_{3}$ and $f\left(s_{2}\right)=s_{4}$.

Hamiltonicity of H_{m}^{n}

Theorem 1

Every Hanoi graph is hamiltonian.

Proof: Fix any $m \in \mathbb{Z}^{\geq 0}$.
The proof consists of two parts.

- Part I: We will show by induction on n that there exists a hamiltonian path in H_{m}^{n} beginning and ending with vertices that correspond to distinct perfect states.
- Part II: We will use the result of Part I to construct a hamiltonian cycle in H_{m}^{n+1}.

Theorem 1, Part I

Base Case:

Let $n=1$.
The Hanoi graph H_{m}^{1} is isomorphic to the complete graph on $3+m$ vertices, which is hamiltonian, and so contains a hamiltonian path.

Example: H_{2}^{1}

Theorem 1, Part I

Induction Hypothesis:
Fix any $n \geq 1$ and suppose H_{m}^{n} has a hamiltonian path beginning and ending with vertices that correspond to distinct perfect states.
H_{m}^{n+1} corresponds to the puzzle obtained by adding a disc with radius $n+1$ to the Tower of Hanoi puzzle that correspond to H_{m}^{n}.

Theorem 1, Part I

Without loss of generality, suppose all discs begin on peg 0 .

By the induction hypothesis, there is a hamiltonian path between distinct perfect states in H_{m}^{n}.
By Lemma 1, perfect states are isomorphic, so there is a hamiltonian path between any two distinct perfect states.

We can move disc $n+1$ stepwise through every peg from 0 to $2+m$ in the following way.

Theorem 1, Part I

Before each step moving disc $n+1$, we perform a hamiltonian path transferring the n-tower of discs to a peg allowing disc $n+1$ to move.

In general, before moving disc $n+1$ from peg i to peg $i+1$, we first move the n-tower to peg $i+2(\bmod 3+m)$.

Theorem 1, Part I

After the last move of disc $n+1$ to peg $2+m$, the n tower can be transferred to peg $2+m$ as well, again through a hamiltonian path in H_{m}^{n}.
During this process, every possible state of all $n+1$ discs is achieved exactly once, completing a hamiltonian path in H_{m}^{n+1}.

Theorem 1, Part II

We now construct a hamiltonian cycle in H_{m}^{n+1}.
Without loss of generality, let the initial vertex in the cycle be $(1,1, \ldots, 1,0) \in V\left(H_{m}^{n+1}\right)$.

By Part I, we can transfer the n-tower of smaller discs from peg 1 to peg 2 through a hamiltonian path, followed by moving disc $n+1$ to peg 1 .
In this step, we've gone through every vertex with a 0 in the last entry, ending on vertex ($2,2, \ldots, 2,1$).

Theorem 1, Part II

Continuing in this way, we transfer the n-tower through a hamiltonian path from peg $i+1$ to peg $i+2$ for each $i \in\{0,1, \ldots, 2+m\}$, following each by a single move of disc $n+1$ from peg i to peg $i+1$, where each step is modulo $3+m$.
In each step, we go through
 every vertex with an i in the last entry.

Theorem 1, Part II

The process terminates when we transfer the n tower back to peg 1, followed by moving disc $n+1$ to peg 0 .
We have completed a path in H_{m}^{n+1} that goes through every vertex exactly once and ends on the initial vertex. Thus H_{m}^{n+1} contains a hamiltonian cycle.■

Planar Graphs

Definition

A graph G is called planar if it can be drawn in the plane without any crossings.

Example:

The complete graph
K_{4} is planar.
The complete graph K_{5} is not planar

Planarity of H_{m}^{n}

Theorem 2

The only planar Hanoi graphs are H_{0}^{n}, H_{1}^{1}, and H_{1}^{2}.

Proof:

- Part I: We will show that H_{1}^{1} and H_{1}^{2} are planar by constructing planar embeddings of each.
- Part II: We will show by induction that H_{0}^{n} is planar for all $n \in \mathbb{N}$.
- Part III: We will show that H_{m}^{n} is non-planar for all $m \geq 2$ and $n \geq 1$.
- Part IV: We will show that H_{1}^{n} is non-planar for all $n \geq 3$.

Theorem 2, Part I

H_{1}^{1} and H_{1}^{2} are planar, as demonstrated by planar embeddings.

Note that, since H_{1}^{2} is 3 -connected (there is no pair of vertices whose deletion results in a disconnected graph), this planar embedding of H_{1}^{2} is essentially unique.

Theorem 2, Part I

$\boldsymbol{m}, \boldsymbol{n}$	1	2	3	4	5	\ldots
0						
1	\mathbf{Y}	\mathbf{Y}				
2						
3						
4						
5						
\vdots						

Theorem 2, Part II

We will show by induction on n that H_{0}^{n} allows a planar embedding, whose infinite face is the complement of an equilateral triangle with side length $2^{n}-1$, and whose corners are the perfect states.

Base Case: Let $n=1$.
The graph H_{0}^{1} corresponds to the Tower of Hanoi puzzle with 1 disc on 3 pegs. The disc can move freely between the pegs, so H_{0}^{1} is isomorphic to the complete graph K_{3}.
Thus H_{0}^{1} is planar and it can be drawn as an equilateral triangle with side length $1=2^{1}-1$.

Theorem 2, Part II

Induction Hypothesis:
Fix any $k \in \mathbb{N}$ and suppose H_{0}^{k} can be drawn without crossings such that its infinite face is the complement of an equilateral triangle with side length $2^{k}-1$ and the corners are the perfect states.
Label the perfect states of H_{0}^{k} by ([0]), ([1]), and ([2]), where ([i]) is the k-tuple consisting of all i 's.

Theorem 2, Part II

We construct H_{0}^{k+1} in the following way.

- Take 3 copies of H_{0}^{k}, one for each possible position of disc $k+1$ (peg 0, 1, or 2).
- Relabel their vertices with $(k+1)$-tuples ending in 0,1 , and 2, respectively.
- Add 3 edges to form the adjacencies ([0], 1)~([0], 2), ([1], 0)~([1], 2), and ([2],0)~([2], 1).
- Since each of the 3 copies of H_{0}^{k} is an equilateral triangle, through flips we can arrange them so that each of the three edges added are the middle edges of a new equilateral triangle with side length

$$
2\left(2^{k}-1\right)+1=2^{k+1}-1 .
$$

Theorem 2, Part II

Theorem 2, Part II

We certainly have the adjacencies ([0], 1)~ ([0], 2),
([1], 0) $\sim([1], 2)$, and $([2], 0) \sim([2], 1)$ in H_{0}^{k+1}, since if the k tower of smaller discs are all on one peg, then disc $k+1$ is free to move between the other two pegs.

To verify that exactly 3 edges are added to the 3 copies of H_{0}^{k} to form H_{0}^{k+1}, we can use the edge count formula for H_{m}^{n}

$$
\left|E_{m}^{n}\right|=\frac{(3+m)(2+m)}{4}\left[(3+m)^{n}-(1+m)^{n}\right]
$$

to show that

$$
\left|E_{0}^{k+1}\right|=3\left|E_{0}^{k}\right|+3 .
$$

Thus H_{0}^{n} is planar for all $n \in \mathbb{N}$.

Theorem 2, Part II

$\boldsymbol{m , n}$	1	2	3	4	5	\ldots
0	Y	Y	Y	Y	Y	\cdots
1	Y	Y				
2						
3						
4						
5						
\vdots						

Theorem 2, Part III

The Hanoi graph H_{2}^{1} is isomorphic to the complete graph K_{5}, which is nonplanar.

For any $m \geq 2$ and $n \geq 1$, the Tower of Hanoi puzzle has at least 5 pegs.
In any regular state, the smallest disc can move freely between any set of 5 pegs, so K_{5} is a subgraph of the corresponding Hanoi graph.
Thus H_{m}^{n} is non-planar for all $m \geq 2$ and $n \geq 1$.

Theorem 2, Part III

$\boldsymbol{m}, \boldsymbol{n}$	1	2	3	4	5	\ldots
0	Y	Y	Y	Y	Y	\ldots
1	Y	Y				
2	\mathbf{N}	\mathbf{N}	\mathbf{N}	\mathbf{N}	\mathbf{N}	\ldots
3	\mathbf{N}	\mathbf{N}	\mathbf{N}	\mathbf{N}	\mathbf{N}	\ldots
4	\mathbf{N}	\mathbf{N}	\mathbf{N}	\mathbf{N}	\mathbf{N}	\ldots
5	\mathbf{N}	\mathbf{N}	\mathbf{N}	\mathbf{N}	\mathbf{N}	\ldots
\vdots	\vdots	\vdots	\vdots	\vdots	\vdots	\ddots

Theorem 2, Part IV

Lemma 2

Fix any $m, n \in \mathbb{N}$, any $k \in \mathbb{N}$ such that $k<n$.
Fix any $l \in\{0,1, \ldots, 2+m\}$.
Let $S=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \mid x_{k+1}=x_{k+2}=\cdots=x_{n}=l\right\}$.
Then the subgraph of H_{m}^{n} induced by S is isomorphic to H_{m}^{k}.

Theorem 2, Part IV

By Lemma 2, H_{1}^{3} is a subgraph of H_{1}^{n} for all $n>3$.
So we need only show that H_{1}^{3} is non-planar.

Kuratowski's Theorem:
If a graph G contains a subgraph that is a K_{5} or $K_{3,3}$ subdivision, then G is non-planar.

We can construct H_{1}^{3} by taking 4 copies of H_{1}^{2}, one for each position of the largest disc, and adding 24 edges corresponding to legal moves of the largest disc.

Theorem 2, Part IV
H_{1}^{3}

Theorem 2, Part IV

Theorem 2, Part IV

K_{5} subdivision subgraph of H_{1}^{3} :

Thus H_{1}^{n} is non-planar for all $n \geq 3$.

Theorem 2, Part IV

$\boldsymbol{m}, \boldsymbol{n}$	1	2	3	4	5	\ldots
0	Y	Y	Y	Y	Y	\ldots
1	Y	Y	N	N	N	\ldots
2	N	N	N	N	N	\ldots
3	N	N	N	N	N	\ldots
4	N	N	N	N	N	\ldots
5	N	N	N	N	N	\ldots
\vdots	\vdots	\vdots	\vdots	\vdots	\vdots	\ddots

Conclusion

Planarity:

The only planar Hanoi graphs are H_{0}^{n}, H_{1}^{1}, and H_{1}^{2}.

Hamiltonicity:

Every Hanoi graph H_{m}^{n} is hamiltonian.

Some Open Problems

- The Frame-Stewart Conjecture for more than 4 pegs.
- The genera and crossing numbers for non-planar Hanoi graphs.
- A formula for the average distance in H_{m}^{n} for $m \geq 1$.
- The diameter of H_{m}^{n} for $m \geq 1$.

References

T. Bousch, La quatrieme tour de Hanoi, Bull. Belg. Math. Soc. Simon Steven, 21 (2014): 895-912.
A. Hinz and D. Parisse, On the planarity of hanoi graphs, Expositions Mathematicae, 20 (2002): 263-268.
A. Hinz, S. Klavzar, U. Milutinovic, and C. Petr, The Tower of Hanoi Myths and Maths, Springer Basel, 2013.
S. Klavzar, U. Milutinovic, and C. Petr, Combinatorics of topmost discs of multi-peg Tower of Hanoi problem, ARS Combin., 59 (2001): 55-64.
J.S. Rohl and T.D. Gedeon, The Reve's Puzzle, The Computer Journal, 29 (1986): 187-188

Douglas B. West, Introduction to Graph Theory, Prentice Hall, Second Edition, 2001.

